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Abstract—The importance of Speech Emotion Recognition
(SER) is growing across diverse applications, which has resulted
in the development of multiple methodologies and models to
improve SER performance. Nevertheless, some modern SER
models require significant processing resources and exhibit poor
performance, making them unsuitable for real-time applications.
To address this, we propose a novel approach that leverages
Knowledge Distillation (KD) to create lightweight student models
derived from the 3M-SER architecture. Our method focuses
on compressing the text embedding component by replacing
BERTBASE with smaller variants while maintaining VGGish for
audio embedding. Experiments conducted on the IEMOCAP
dataset demonstrate that our student model, which reduces model
size by up to 44.9%, achieves performance remarkably close to
that of the teacher model while improving inference time by
up to 40.2% when trained with KD. These results underscore
the effectiveness of KD in creating efficient and accurate SER
models suitable for resource-constrained environments and real-
time applications. Our work contributes to the ongoing effort to
make advanced SER technology more accessible and deployable
in practical settings.

Index Terms—Speech Emotion Recognition, Knowledge Distil-
lation

I. INTRODUCTION

In recent years, Speech Emotion Recognition (SER) has
garnered significant attention and undergone substantial devel-
opment, especially its potential to evaluate customer emotions
during online service consultations. In addition, SER also has
diverse applications in healthcare, entertainment, e-learning,
and human-computer interaction [1], which take advantage of
emotion recognized by the deep learning model through voice
analysis to enhance the user experience.

In the early stage, SER systems mainly relied on tradi-
tional audio features such as zero crossing rate, pitch, and
Mel-Frequency Cepstral Coefficients (MFCCs) to recognize
emotions [2]. With the introduction of deep learning, the
performance of emotion recognition is improved by passing
these features through a deep network such as Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs). For example, CNNs can be applied to MFCCs to
extract intricate patterns related to emotional states as used
in [3]. In addition, Zhang et al. [4] proposed a method that
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merges a two-branch CNN to capture deep features from both
audio and MFCCs. In 2017, Google created a new audio model
called VGGish [5], which uses a CNN-based approach to
convert audio signals into vector features in a latent space.
This transformation involves converting each second of audio
into a spectrogram image using log Mel-spectrograms.

Another approach in SER is to focus on extracting text
features from spoken language. In text-based SER, several
techniques are employed to enhance emotion recognition.
One such technique is word embeddings, which capture the
meaning of words in their context, allowing for a more nu-
anced understanding of the text. Traditional word embeddings
like Word2Vec [6] and GloVe [7] generate a single, static
vector for each word. This vector remains the same regardless
of the context in which the word appears, which can limit
their ability to differentiate between different meanings of the
same word based on context. Contextual embeddings have
been introduced to address the limitations of traditional word
embeddings. These embeddings generate dynamic vectors that
vary depending on the word’s context, capturing more nuanced
and contextually relevant meanings. Among the most advanced
and influential techniques in this domain is BERT [8] (Bidirec-
tional Encoder Representations from Transformers). By utiliz-
ing a self-attention mechanism and pre-training on large text
datasets, BERT learns contextual feature vectors for words and
sentences. This enables BERT to understand complex language
patterns and extract meaningful textual embeddings, enhancing
the accuracy and effectiveness of emotion recognition tasks.

Recently, researchers have explored combining audio and
text features for more robust SER systems. The SERVER
model [9] which integrates BERT [8] for text feature extraction
and VGGish [5] for audio feature extraction. While SERVER
achieves better accuracy by considering both audio and text,
it doesn’t fully explore their interconnections, which might
limit its potential. To address this, Tran et al. introduced
enhancements such as 3M-SER [10] further to refine the inte-
gration of audio and text features and integrating feature loss
function [11] into 3M-SER to capture more nuanced emotional
information by adjusting fusion feature vectors. Expanding on
these developments, the MERSA [12] model incorporates self-
align embeddings into the feature extractor and utilizes cross-
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Fig. 1: Knowledge Distillation process for Multi-modal Speech Emotion Recognition

attention to combine text and audio features. By integrating
multi-modal information more effectively, MERSA enhances
the model’s ability to process and respond to textual and
auditory inputs coherently. This improvement contributes to
better performance in tasks that require the integration of both
modalities.

While models such as SERVER, 3M-SER, and MERSA
have shown significant improvements in accuracy, they often
result in high model complexity and high computational cost,
which limits their practical application in real-time scenarios.
To address this problem, we propose leveraging Knowledge
Distillation (KD) [13] to enhance the smaller variants of the
3M-SER model. KD is a technique that transfers knowledge
from a large model (teacher) to a smaller model (student),
aiming to minimize the student’s error and achieve a balance
between model size and performance. By applying KD, our ap-
proach provides a compact and efficient model for real-world
emotion detection tasks without compromising accuracy.

Our contributions can be summarized as follows:

• We replace BERTBASE as a text embedding extractor in
the teacher model 3M-SER with its smaller variants by
reducing the number of hidden layers while retaining
VGGish for extracting audio embedding to build out
student models.

• We use KD with logits-based and feature-based loss to
transfer knowledge from the teacher to student models,
allowing the smaller models to achieve comparable per-
formance.

• Our student models achieve up to a 44.9% reduction in
total parameters and a 40.2% reduction in inference time
while maintaining performance closely aligned with the
teacher model in SER tasks.

The rest of this paper is organized as follows: Section II
provides a detailed description of the architecture of our
student models and outlines the knowledge distillation process

employed during their training. In Section III, we present
the experimental results and analysis conducted on the SER
dataset, evaluating the performance of the proposed model.
Finally, in Section IV, we summarize our findings and discuss
potential future directions for this research.

II. METHODOLOGY

A. Knowledge Distillation in Multi-modal SER

This section presents our technique for using KD to transfer
knowledge in a multi-modal SER system, as illustrated in
Figure 1. The following subsection details the architectures
of the teacher and student models. As shown in Figure 1, the
teacher and student models first process the input separately.
We soften the teacher outputs because they contain more
information about the relative probabilities of different classes,
providing a richer signal than complex labels. Next, the loss
function is applied to transfer knowledge from the teacher
model to the student model. It consists of two components:
logits-based loss and feature-based loss. The logits-based
loss component compares the probability distributions of the
teacher and student models and the student’s predictions with
the ground truth labels to encourage the student to mimic the
teacher’s predictions while learning from the true labels. The
feature-based loss component compares the text embeddings
of the teacher and student models. This encourages the student
model to learn similar internal representations as the teacher.
We aim to transfer the teacher’s ability to extract meaningful
text representations to the student model by aligning these
intermediate features. Finally, these loss components are com-
bined to form the total loss function.

B. Teacher and student models

In this study, we choose the 3M-SER model [10] as a
teacher model based on its performance and its system de-
signed to leverage the strengths of both textual and audio
embeddings to classify emotional states.
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Fig. 2: Architecture of the 3M-SER model

As shown in Figure 2, the 3M-SER model employs a dual-
stream architecture, which processes text and audio inputs
independently before fusing them. To process the audio input,
3M-SER employs VGGish [5]. This CNN model has been
pre-trained on extensive audio datasets to transform audio
signals into log-mel spectrograms and effectively extract im-
portant audio features. For text processing, the model utilizes
BERT [8] to comprehend the meaning of words in different
contexts, resulting in robust text feature extraction. Once the
audio and text features are extracted, 3M-SER employs multi-
head attention to fuse these features. This fusion process
utilizes the attention mechanism, which allows the model to
focus on different aspects of the audio and text features. By
doing so, the model can identify the most relevant information
for accurate emotion detection. Furthermore, 3M-SER incor-
porates layer normalization in the audio feature to stabilize
the fusion process between the text and audio features. This
technique ensures a smooth integration of information from
both modalities, enhancing the overall performance of the
system as discussed in [10].

To address the computational challenges of large-scale SER
models and to create a more efficient system for real-time
applications, we propose a student model derived from the
3M-SER [10] teacher model. The primary breakthrough in
our student model is in the text embedding component. The
teacher model utilizes BERT, a large-scale language model
consisting of multiple layers of Transformer blocks. Specifi-
cally, the teacher model uses BERTBASE, which contains 12
layers. In contrast, our student model investigates the use of
a smaller BERT by reducing its hidden layers to 6, 4, and
2, resulting in the creation of BERT6, BERT4, and BERT2,
while retaining the original hidden size of 768 and 12 attention
heads. Table I provides a detailed comparison of these variants
regarding hidden layers and total parameters. For audio feature
extraction, our student models continue using the VGGish
component in the teacher model.

TABLE I: Comparison of BERT and its lightweight variants

Text embedder Hidden layers Params (M)
BERTBASE 12 85.65

BERT6 6 43.12
BERT4 4 28.94
BERT2 2 14.77

C. Training objective

When employing knowledge distillation for training a stu-
dent model, we incorporate two types of loss: logits-based and
feature-based loss.

Logits-based loss (LLogits) aims to transfer the softened
logits from the teacher to the student model while learning
from the true labels. To soften the model logits, we take
temperature scaling on the logits, a widely used calibration
technique [14], which is calculated as follows:

Pk = softmax(Zk/T ) (1)

where, Pk and Zk is the soften logits and logits of k-th
sample of our model, respectively, and T is the temperature
scaling parameter.

To transfer the softened logits from the teacher model to
the student model, we utilize the Kullback-Leibler divergence
loss function, denoted as LKL. This loss function measures
the similarity between the emotional probability distributions
of the soft labels obtained from the teacher model and the soft
predictions generated by the student model. By minimizing
this loss, we encourage the student model to generate proba-
bility distributions that closely resemble those of the teacher,
therefore successfully transferring the teacher’s knowledge to
the student. The LKL is defined as follows:

LKL =
1

N

N∑
k=1

KL(P t
k ∥ P s

k ) (2)

where N represents the number of samples, P t
k and P s

k

are respectively the softened probability distribution of k-th
sample from the teacher and student model calculated using
the Eq. 1, KL(.) denotes the Kullback-Leibler divergence of
two components.

Although the LKL helps student models replicate the
teacher’s output, it is challenging for the student model to
reproduce the same features as the teacher due to architec-
tural differences. Moreover, the convergence point of student
models may differ from that of the teacher model, leading to
poor performance. To address these challenges, cross-entropy
loss (LCE) is also employed in the training process of student
models. This loss function supports student models in finding
their optimal convergence point. The student models can
learn more effectively from the provided examples by directly
measuring the disparity between the predicted probabilities
and the actual labels. We can define LCE as follows:

LCE = − 1

N

N∑
k=1

yk log y
s
k (3)
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where ysk is the predicted probability of the k-th sample
using the softmax function generated by the student model,
and yk is the ground truth label of the k-th sample.

From Eqs. 2 and 3, the LLogits can be defined as follows:

LLogits = αLKL + (1− α)LCE (4)

where α is a weighting factor that balances the two com-
ponents.

Feature-based loss (LFeature) ensures that the student
model’s text embeddings closely align with the teacher’s. We
use the mean squared error (MSE) between the teacher’s
and student’s text feature embeddings. This MSE function
measures the average squared difference between the text
embeddings produced by the teacher and student models. By
minimizing this loss, we encourage the student model to learn
text representations similar to the teacher model. The LFeature

is defined as follows:

LFeature =
1

N

N∑
k=1

∥ f t
k − fs

k ∥2

h
(5)

where h is the size (number of elements) of the text
embedding vector, f t

k and fs
k represent the text embedding

generated by the teacher and student models at k-th sample,
respectively.

By using both LLogits and LFeature, we encourage the
student model to not only replicate the final output of the
teacher and learn from truth labels but also acquire comparable
intermediate representations. The total loss function (LTotal)
for training the student model is a combination of the logits-
based and feature-based loss, which is defined as follows:

LTotal = LLogits + LFeature (6)

D. Performance metrics

Evaluating the performance of a SER system involves
using various metrics to assess its accuracy and effectiveness
comprehensively. In this study, we utilize four key metrics:

1) Accuracy (ACC): This fundamental metric measures the
proportion of correct predictions out of the total predictions
made. It is calculated as follows:

ACC =
TP + TN

TP + TN + FP + FN
(7)

where TP , TN , FP , and FN represent true positive, true
negative, false positive, and false negative samples, respec-
tively.

2) Balanced Accuracy: This metric overcomes the limita-
tions of ACC by treating each class equally, making it better
suited for imbalanced datasets. Balanced Accuracy (BACC)
ensures fair performance measurement across all classes, de-
fined as the average recall for each class:

BACC =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
(8)

3) Macro F1-Score: This is another metric that is partic-
ularly useful for imbalanced datasets. It independently cal-
culates the unweighted mean of precision and recall scores
for each class. The formula of Macro F1-Score (MF1) is as
follow:

MF1 =
1

C

C∑
i=1

F1i (9)

where C is total number of classes, F1i is the F1-Score of
i-th class. The F1-Score for each class is the harmonic mean
of precision and recall:

F1 = 2 · Precision ·Recall

Precision+Recall
(10)

4) Weighted F1-Score: This metric is similar to the Macro
F1-Score metric but considers the support (the number of true
instances) of each class. It is computed as:

WF1 =
1

C

C∑
i=1

wi · F1i (11)

where wi is the proportion of the true instances of i-th
class relative to the total instances. This metric ensures that
the F1-Score of each class contributes proportionally to its
occurrence in the dataset, providing a more realistic evaluation
for imbalanced datasets.

III. RESULT AND DISCUSSION

A. Dataset

To assess the performance of our model, we utilized the In-
teractive Emotional Dyadic Motion Capture (IEMOCAP) [15]
dataset for training and testing. This dataset comprises ap-
proximately 12 hours of audiovisual data, including recorded
speech and transcriptions. Our study focused on four primary
emotional states: neutral, sadness, happiness, and anger. The
dataset consisted of 1,708 neutral samples, 1,084 sadness
samples, 1,636 happiness samples, and 1,103 anger samples,
divided into the train, validation, and test datasets. The distri-
bution of these emotional states can be visualized in Figure 3.

Fig. 3: Distribution of emotional states in IEMOCAP dataset
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TABLE II: Performance and efficiency comparison of teacher and student models on IEMOCAP dataset

Methods
Total Inference Validation (%) Test (%)

Params (M) Time (ms) BACC ACC MF1 WF1 BACC ACC MF1 WF1

BERTBASE-VGGish
157.91 32.80 81.80 80.32 80.80 80.15 81.24 80.69 80.93 80.69

(Teacher)

BERT6-VGGish
115.38 23.38

78.12 78.31 78.83 78.48 76.32 76.71 77.06 76.78
BERT6-VGGish + KD 80.36 79.32 79.88 79.18 78.92 78.52 78.71 78.45

BERT4-VGGish
101.21 21.46

78.60 77.51 78.13 77.30 76.93 76.53 76.65 76.49
BERT4-VGGish + KD 78.85 78.31 78.93 78.41 79.03 78.34 78.88 78.35

BERT2-VGGish
87.03 19.60

78.19 77.11 77.85 76.96 76.90 76.90 76.83 76.73
BERT2-VGGish + KD 79.48 77.91 78.53 77.56 79.26 78.16 78.34 77.93

B. Experimental setup

All the experiments are conducted on Kaggle using two
NVIDIA T4 GPUs with 16 GB VRAM. The Stochastic
Gradient Descent [16] optimizer is utilized with an initial
learning rate of 10−6. After every 30 epochs, the learning rate
is reduced by a factor of 10. For the logits-based loss function,
The optimal hyperparameters based on [13] are utilized which
set the temperature scaling of 2 and the logits-based loss
weighting factor to 0.5. The training process consisted of
two stages: transfer learning and fine-tuning. In the transfer
learning stage, the model is initialized with pre-trained weights
and trained for 50 epochs. After that, the best weight on
the evaluation dataset obtained from transfer learning is used
for continuing training in the fine-tuning phase. During fine-
tuning, we unfroze all layers of the text processing component.
However, the audio processing component remained frozen,
meaning its weights were not updated during fine-tuning. This
approach allowed us to focus on improving the text-processing
part of the model while keeping the audio-processing part
consistent.

C. Comparisons and Results

Table II presents the performance comparison between the
teacher model, 3M-SER, and our proposed student mod-
els trained on the IEMOCAP dataset. As we progressively
compressed the hidden layers of the BERTBASE models to
reduce their size, a corresponding decline in performance
was observed. This decline is expected, as the reduction in
model complexity limits the ability of the student models to
capture and represent rich features. However, after applying
the KD technique, which incorporates logits-based and feature-
based loss, we observed a significant improvement in the
performance of these compressed student models on both the
validation and test datasets. Specifically, our student models
using BERT6, BERT4, and BERT2 for text embedding with
KD achieved performance improvements of 1.59%, 1.37%,
and 1.21%, respectively, on average across all performance
metrics for the validation and test datasets, nearly matching
the performance of the teacher model. This demonstrates that
KD effectively transfers knowledge from the teacher model to
the student models, enabling them to retain critical information
and maintain a higher level of performance despite their
reduced size.

On the other hand, BERT2-VGGish has roughly half the
number of parameters compared to the teacher model, with
87.03 million versus 157.91 million parameters. Despite this
reduction, BERT2-VGGish maintains commendable perfor-
mance compared with the teacher model. Furthermore, it
achieves an impressive average inference time of 19.60 mil-
liseconds per sample on the test dataset, compared to 32.80
milliseconds for the teacher model. In this experiment, the
design of the student model only considers the size of the
hidden layer of the text embedding. The feature size is fixed
to match the teacher’s feature size to ensure compatibility
during the training of the student model. This constraint
makes it challenging to reduce the model’s parameters while
maintaining its performance.

Figure 4 presents the confusion matrices on the test dataset
for BERT6-VGGish student model. The results demonstrate
that integrating KD into BERT6-VGGish student model im-
proves the overall classification performance across most emo-
tion categories. Specifically, the BERT6-VGGish method with
KD shows higher accuracy in predicting ”Anger”, ”Happi-
ness”, and ”Sadness” emotions, with reduced misclassifica-
tion rates in these categories. However, the baseline model
without KD outperforms in recognizing ”Neutral” emotions,
suggesting that while KD enhances the model’s ability to
distinguish more distinct emotional states, it may introduce
some ambiguity in classifying more subtle emotions like
”Neutral”.

IV. CONCLUSIONS AND FUTURE WORK

In conclusion, this study presents a highly effective method
for multi-modal SER by employing KD, resulting in notable
improvements in both model accuracy and computational effi-
ciency. We leverage the 3M-SER model (using the BERTBASE-
VGGish method) as the teacher model and replace BERTBASE
with its lightweight variants such as BERT6, BERT4, and
BERT2 for text embedding to build out student models.
Experiments on the IEMOCAP dataset show that our student
models, which reduce model size by up to 44.9%, achieves
performance comparable to the teacher model while improving
inference time by up to 40.2% when trained with KD. This
combination of performance and compactness emphasizes the
promise of KD in constructing more smaller yet powerful SER
models, making them highly suitable for deployment in real-
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(a) Without Knowledge Distillation. (b) With Knowledge Distillation.

Fig. 4: Confusion matrices for BERT6-VGGish student model

world applications where speed and resource efficiency are
crucial.

Our results demonstrate the successful development of
lightweight student models that maintain the accuracy of the
original 3M-SER while substantially improving their speed
and suitability for real-time applications. However, further
improvements are needed to meet the full requirements of real-
time applications. Future research will focus on reducing the
number of parameters in both the audio and text extraction
components. Additionally, reducing the text feature size will
be explored to further decrease the text extraction model size.
Furthermore, experimentation with different preprocessing
techniques will be conducted to identify optimal solutions for
processing continuous audio input, which is crucial for real-
time SER applications. Addressing these aspects will further
enhance the speed and efficiency of our models, making them
more suitable for real-time deployment.
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